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The phase diagram of the charged hard dumbbell system(hard spheres of opposite unit charge fixed at
contact) is obtained with the use of the random phase approximation(RPA). The effect of the impenetrability
of charged spheres on charge-charge fluctuations is described by introduction of a modified electrostatic
potential. The correlations of ions in a pair are included via a correlation function in the RPA. The coexistence
curve is in good agreement with Monte Carlo simulations. The relevance of the theory to the restricted
primitive model is discussed.
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I. INTRODUCTION

The criticality of simple electrolytes has been a subject of
intense research for decades. The two defining features of
electrolytes were already captured by Debye and Hückel[1]
who pointed out the essential role of charge fluctuations, and
Bjerrum [2] who noted that for large charges/concentrations
strongly nonlinear interactions would lead to effective pair-
ing of oppositely charged ions. The simplest theoretical
model which received most attention is the restricted primi-
tive model (RPM), which consists of an equal number of
positively and negatively charged spheres, all of diametera.
Recent interest in the phase diagram of the RPM has been
stimulated by appearance of reliable results from Monte
Carlo simulations[3–8].

Most of the theories of phase separation in the RPM con-
centrate on calculating the properties of clusters[9] and ob-
taining the estimates for the association constant for dimer
formation [10] or the free energies of higher order clusters
[11]. However, the interactions between different clusters
have not received due consideration. They are either ne-
glected [9], considered as interactions between charged
spheres of the size of the clusters[11], or only dimer-ion
interactions are considered[12,13]. Fisher and Levin[10,13]
emphasized the necessity of a correct description of inter-
cluster interactions. They incorporated dimer-ion interactions
into the Debye-Hückel theory(DH) and thus obtained a good
estimate of the coexistence curve.(We avoid the use of the
term “dipole” here to avoid confusion between point-like
dipoles and related systems of dipolar spheres, in which no
phase separation is found[14,15] unless van der Waals inter-
actions are included[16].) The fairly simple theory of Fisher
and Levin[10,13] yields better results when compared with
Monte Carlo(MC) simulations than those obtained with the
use of the mean-spherical approximation(MSA) [11,12] for
simple electrolytes. This demonstrates that correct account of
charge correlations is more important than a correct descrip-
tion (as in the MSA) of the hardcore of the spheres.

Recent computer simulations have conclusively demon-
strated that the phase coexistence in RPM is driven by inter-

actions between dimers[17]. Camp and Patey[5] found that
the number of free ions at the critical temperature of the
RPM is “essentially zero.” Actually, the phase coexistence
curve of the charged hard dumbbell(CHD) system is found
to be very close to that of the RPM[18,19]. Most recent[20]
MC calculations of the critical point of the CHD system give
Tc

* almost identical to that of the RPM, whilerc
* is found to

be approximately 25% higher. They also conclude that the
CHD system belongs to the same universality class(Ising) as
the RPM[7], the general features upon approach to the criti-
cal point were found to be similar. A recent binding mean-
spherical approximation theory of Jianget al. [21] yields the
best results when ions are assumed to be fully paired.

We construct here a theory of phase coexistence in
charged hard dumbbells using the RPA. We use the RPA
(which for point-like ions is equivalent to the DH theory
[22]) to account on a linear level for collective fluctuations
of charge density due to linearizable long-range electrostatic
interactions. The strong short-range correlations that bind the
1 and 2 charges are described via molecular correlation
functions. We consider the simplest case when all ions form
ionic dimers or dumbbells. In principle, the form of the cor-
relation function between ions in a pair can be arbitrary in
the theory. We construct the phase diagram using different
forms for the molecular correlations of the ionic pairs and
compare the results; we also compare the RPA phase dia-
grams of dumbbells with the phase diagrams obtained by
using the binding MSA and MC simulations for dumbbells
and for the RPM. Our RPA approach is closely related to the
theory of Fisher and Levin[10,13], who used a DH-like ap-
proach to calculate the fluctuation contribution from dimer-
ion interactions. We use instead a RPA formulation of the
DH theory to calculate the contribution from dimer-dimer
interactions.

The random phase approximation is a well-established
theoretical method extensively used in polymer physics
[23–25]. It successfully describes collective fluctuations in
polymer blends[24,26,27] and polyelectrolyte solutions[22].
The applicability of the RPA in polymer blends is based on
the presence of long-range structural correlations due to the
connectedness of monomers in a polymer chain. This results
in the Ginzburg region being vanishingly small[24] t= uT
−Tcu /Tc,N−1 (where N is the number of polymers in a
chain, typicallyN,103). For simple electrolytes long-range
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correlations are due to the long-range nature of the bare Cou-
lomb potential, which could be expected to ensure similarly
small t. However, although the Ising criticality for RPM and
CHD has been confirmed in MC simulations[6,7,20], at
present no agreement exists concerning the Ginzburg number
of RPM, with reported values varying fromt,10−4 (Refs.
[28–30]) to the valuest,10−1 found for neutral van der
Waals fluids[31–34].

II. THEORY AND RESULTS

We consider a system of dumbbells composed of two hard
spheres of opposite unit charges +e and −e fixed at the con-
tact point. The diameters of all spheres area which consti-
tutes the only molecular scale of the system. The number
concentration of all charges(spheres) is r (thus the concen-
tration of dumbbell molecules isr /2). It is convenient to
construct the phase diagram in terms of reduced concentra-
tion r* = ra3 and temperatureT* = kBT«a/e2=a/ lB (here« is
the dielectric constant of the medium andlB is the Bjerrum
length).

We use the random phase approximation[23,24] to calcu-
late the fluctuation contribution to the free energy arising
from charge-charge fluctuations. The expression for the gen-
eral case when structural correlations are present between
different components reads(below all energies are reduced
by kBT and all lengths and wavevectors bya):

FRPA

V/a3 =
1

2
E SlnhdetfI + gsqdUsqdgj − o

i

riUiisqdD d3q

s2pd3 .

s1d

Here Usqd=zizjUsqd is the interaction matrix, withzi being
the valences, andUsqd the Fourier transform:Usqd
=edreiqrUsrd. For the bare Coulomb potential we obtain

UCoulsrd =
lB
r

, UCoulsqd =
4plB
q2 . s2d

Structural bonding(either chemical or thermoreversible) is
described in the structure matrixgsqd the elements of which
are molecular correlation functions[35]. Given that the com-
ponents of the matrixUsqd have the formUijsqd=zizjwsqd,
wherewsqd does not depend oni or j , we can rewrite(1) as
[35]:

fRPA =
FRPA

V/a3 =
1

2
E d3q

s2pd3slnh1 + TrfgsqdUsqdgj − Trfgsq

= `dUsqdgd. s3d

We start by considering the case of point-like positive and
negative ions each having a number concentrationr /2. The
Coulomb interaction is given by Eq.(2) with the vector of
valenceszi =h+1,−1j. The structural correlation matrix is di-
agonal and for point-like ions is given by the concentrations

gsqd = Sr/2 0

0 r/2
D , s4d

which corresponds to no structural correlations between ions,
or no ionic internal structure. SubstitutingUsqd andgsqd into
Eq. (3) we obtain the free energy correction

fRPA =
1

2
E d3q

s2pd3SlnF1 +
4plBr*

q2 G −
4plBr*

q2 D = −
k3

12p
,

s5d

wherek=s4plBr* d1/2. This is exactly the Debye-Hückel re-
sult for point-like ions.

As mentioned earlier, the RPA by its construction cannot
describe the effects of impenetrability of ions. To incorporate
these effects into the RPA we phenomenologically modify
the electrostatic potentialUsqd. The modification should be
carried out atq@1, given that at large distances we should
have unscreened Coulomb potential(2). Since the potential
is isotropic, it must be a function ofq2. Thus, we naturally
arrive at

Ucutsqd =
4plB
q2

1

1 + q2 , s6d

Ucutsrd =
lB
r

f1 − e−rg, s7d

which removes the singularity of the Coulomb potential at
r =0. In particular, this potential has been shown previously
[36] to correctly describe the qualitative features of the
k-transition in simple electrolytes[37–39]. It also has proved
successful in the description of phase separation in polyelec-
trolyte solutions[40]. However, until now no quantitative
comparison has been attempted. Given the phenomenologi-
cal nature of the potential to achieve a quantitative descrip-
tion we need to introduce a fitting parameter. We do it here
by adjusting the abruptness of the cutoff

Uasqd =
4plB
q2

1

s1 + q2da . s8d

We find the value ofa by numerically fitting the free energy
of the RPM obtained from using this potential in the RPA
expression(3):

fRPA
sRPMd =

1

2
E d3q

s2pd3HlnF1 +
k2

q2

1

s1 + q2daG −
k2

q2

1

s1 + q2daJ
s9d

with the well-known solution[41] of the linearized Poisson-
Boltzmann equation for hard charged spheres, which takes
correctly into account the boundary conditions for electro-
static potential

fPB = −
1

4p
Fln k − k +

k2

2
G . s10d

Considering the fact that the free energy is used to construct
the phase diagram, we attempt to fit simultaneously the free
energy and its first derivative. Plots of −4pfPBskd and
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−4pfRPAskd and their first derivatives −4pfPB8 skd and
−4pfRPA8 skd are presented in Fig. 1. The solid lines corre-
sponds tofPB, two dotted lines are forfRPA with a=0.7 and
a=0.8 as indicated, and the dashed line is fora=0.77. As
expected, using justa we cannot fit bothfRPAskd and fRPA8 skd
for all values ofk. In order to obtain certain value fora we
fit the values of the first derivativesfRPA8 skd and fPB8 skd at
k<5, corresponding tok<5.1 of the critical point of
charged dumbbells sr* =0.101±0.003,T* =0.049 11
±0.000 03d obtained in MC simulations[20] (which is also
very close tok<4.4 of the critical point of the RPM[7]).
The best fit is obtained fora=0.77 which is depicted with a
dashed curve. We see that the overall fit offRPAskd and
fRPA8 skd is sufficiently good.

Note, that we choose the potential in the form(3) based
only on the fact that we can obtain a good fit of the resulting
free energy(9) to the linearized PB one(10). We can also try
to adjust the effective radius of the cutoff by introducing the
following potential:

Ubsqd =
4plB
q2

1

f1 + sbqd2g
. s11d

However, we have found that the simultaneous fits of the free
energy and its first derivative using this potential(adjusting
b) are inferior to those obtained employing the potential(8).
In principle, one could improve the fits by using a more
elaborate potential than(8), however, given the overall ap-
proximations of the theory, the accuracy provided byUasqd
(combined with its simplicity) is satisfactory.

In order to find the RPA free energy of dumbbells we need
to introduce the structural correlations between positive and
negative ions via the structure matrix

gsqd = 3
r

2

r

2
psqd

r

2
psqd

r

2
4 s12d

with psqd describing the correlations between ions in a
dumbbell. We use here the natural first approximation that
fixes ions at contact, i.e.,psr d=dsur u−1d or in Fourier space

psqd =
sinq

q
. s13d

Substituting the matrix(12) with the effective potential
Uasqd into Eq.(3) we obtain the electrostatic contribution for
dumbbells with finite size effects

fRPA
sdbd =

1

2
E d3q

s2pd3HlnF1 +
k2

q2

1 − psqd
s1 + q2daG −

k2

q2

1

s1 + q2daJ .

s14d

The full free energy is a sum of the free energy of the neutral
system and the electrostatic input

f = fTS + fRPA
sdbd . s15d

The free energy of neutral dumbbells is given by the
Tildesley-Streett form[42] (we give here the formula for the
particular case when the distance between ionsl * =1, which
corresponds to our assumption)

fTS =
r*

2
ln r * +

Ah − Bh2

s1 − hd2 + C lns1 − hd, s16d

A = 8.211 99, B = 6.3090 95, C = 2.755 03,

whereh=pr* /6.
The coexistence curve of charged dumbbells calculated

from the free energy(15) usinga=0.77 is plotted in Fig. 2 as

FIG. 1. Plots of the differences of the free energies(a) and the first derivatives of the free energy(b) relative to those of linearized PB.
a=0.7 anda=0.8 (dashed lines). a=0.77 (solid line) represents the best fit to the PB free energy.
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a solid line. For comparison we also plot the MC simulations
results for the RPM[7] (circles) and for CHD[19] (squares),
and the theoretical predictions of Fisher and Levin[13]
(dashed curve) and Jianget al. [21] (dotted curve). The criti-
cal point is located atsr* =0.063,T* =0.0495d which is to
be compared with MC resultssr* =0.101±0.003,T*
=0.049 11±0.000 03d for CHD [20] and fr*
=0.0790s25d ,T* =0.050 69s2dg for the RPM [7]. We con-
clude that our approach yields the best available theoretical
prediction for the critical point. Our coexistence curve has a
shape very similar to that obtained by Jianget al. [21]. In
fact, we can fit the two curves adjusting the value ofa.

An important issue that needs to be addressed is how
robust our results are to changes in different inputs of the
free energy. Since we lack any alternative expression for
hardcore contribution of electroneutral dumbbells, the sensi-
tivity to choosing the appropriate term due to density-density
correlations is checked for the RPM. The phase diagrams for
this case are calculated using the potentialUasqd. We com-
pare the coexistence curves obtained using the Carnahan-
Starling free energy of hard spheres[43] with the curve ob-
tained with a simpler Flory-Huggins approximationfs1
−r* dlns1−r* dg. The difference in the critical temperature is
approximately 2%, which indicates robustness of the results
to the choice of hardcore free energy.(Guillot and Guissani
[44] investigated the Fisher-Levin model[13] and reached a
similar conclusion.) This suggests that hard core density ef-
fects are minor in the phase segregation induced by charge
fluctuations.

The robustness of our RPA dumbbell model to the choice
of the fitting parametera is illustrated in Fig. 3. We plot the
CHD coexistence curves usinga=0.77 (solid) and a=0.8
and a=0.7 (dashed) (the equivalent free energies for the
simple electrolyte for these values ofa are given in Fig. 1).
For these different values ofa there is practically no change
in the rc

* , while the temperature changes noticeably. How-
ever, comparing these plots with each other, we can conclude
that the results are sufficiently stable with respect to the
choice of the value ofa. For a=0.7 (which clearly does not

fit the PB curve for a simple electrolyte in Fig. 1) the tem-
perature isTc

* =0.058 which is not very high(e.g., it is very
close to the result of Fisher and Levin[13] Tc

* =0.057). For
a=0.8 we obtainTc

* =0.047 which is to be compared with
Tc

* =0.049 for a=0.77. Note that our choice ofa=0.77 is
based on the fact that for a simple electrolytefRPA8 sxd= fPB8 at
k=4.7, which corresponds tok=4.4 for the RPM obtained
from MC [20,7]. The difference inTc

* whena is varied from
0.77 to 0.8 for the dumbbell is acceptable, if we take into
account that fora=0.8 the fit of the simple electrolyte free
energiesfRPA8 sxd= fPB8 occurs atk=6.7 which is much larger
than the value fora=0.77.

It is also important to determine the sensitivity of the
dumbbell RPA theory to the details of the molecular correla-
tion of the ionic pairs, i.e., to the exact form of the correla-
tion functionpsqd used in Eq.(14). In Fig. 3 the dotted curve
corresponds to the coexistence curve of a system in which
the ions in a pair have Gaussian correlations:psqd
=exps−q2/6d (for this curve a=0.77). In this case Tc

*

=0.043, whilerc
* changes negligibly. Given a significantly

different nature of correlations the shift of the critical point is
not large. Note that the case of a Gaussian correlator is of
particular interest for polymer physics, since for flexible
polymer chains covalent bonds between monomers are theo-
retically described by Gaussian correlations. The assumption
of the same Gaussian correlations between thermoreversibly
associated ions(such as charged ions in associating polyelec-
trolytes) and covalent bonds considerably simplifies a theo-
retical description[35].

As mentioned earlier, MC simulations yield a value ofrc
*

for the CHD that is approximately 25% higher[20] than that
of the RPM[7]. As we see from Fig. 3 a rather significant
change of short-range correlations between ions in a pair,
shifts rc

* only negligibly. Therefore, the observed difference
between the CHD and the RPM critical point must be attrib-

FIG. 2. Comparison of the phase coexistence curves obtained
from our theory(solid line) and the model of Jianget al. [21] (dots),
Fisher and Levin[13] (dashes). Circles are MC results of Luijtenet
al. [7] for RPM, and squares are MC for dumbbells[19].

FIG. 3. Phase coexistence curves fora=0.77 (solid line), a
=0.7 anda=0.8 (dashed lines as indicated). The dotted line is for
a=0.77 and a Gaussian correlator between the ions in a pair.
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uted to other effects not accounted here such as clustering
differences between the RPM and the CHD. That is, in the
RPM there may be ions associated into nonelectroneutral
clusters which may be elongated. Instead, in the CHD the
clusters are always electroneutral, and, therefore, they are
compact. Clustering at higher densities may also explain the
differences in the dense branch of the coexistence curve be-
tween the RPA dumbbell model and the MC results.

III. CONCLUSIONS

We have calculated the phase diagram of charged hard-
core dumbbells using the random phase approximation. It
has long been recognized[2] that a linearized Debye-Hückel
approach by itself is inadequate for description of phase co-
existence of simple ions due to strong(and thus nonlineariz-
able) interactions between neighboring ions. The idea of our
approach is to include short-range nonlinear interactions via
a correlation function, while the remaining long-range part
(leading to collective fluctuations of charge) is well ac-
counted for by the RPA. In fact, the RPA is a formulation of
the Debye-Hückel theory that allows natural introduction of
structural correlations.(In this sense our work can be viewed
as an extension of the Fisher-Levin theory[13] in which they
used DH approach to take into account dimer-ion interac-
tions [45].) The disadvantage of using the RPA to calculate
charge-charge correlations is that we cannot take into ac-

count the finite size of the charged particles; that is, to ac-
count correctly for electrostatic boundary conditions[41].
We overcome this difficulty by introducing a phenomeno-
logical electrostatic potential which is adjusted at length-
scales of the order of the sphere diameter.

Our theory gives a very good prediction for the location
of the critical point, however, the coexistence curve is too
narrow when compared with MC simulations[19,20]. This
may be due to a neglect of all higher clusters, which must be
particularly important in the dense phase. Indeed, calcula-
tions of cluster distributions in RPM have found non-
negligible amount of higher mers, in particular tetramers
[9,4]. In principle, we can include higher order clusters into
our theory by higher order correlation functions and consid-
ering thermal equilibrium between different clusters.

An important wider implication of the presented work is
that the modified random phase approximation quantitatively
describes strongly interacting Coulomb systems. The method
developed here can be easily applied for description of more
complex electrostatic systems with strong interactions, such
as associating polyelectrolytes[35].
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